Risk-benefit analysis attests to the importance of neonatal male circumcision to public health and individual well-being

Introduction

Evidence-based policy statements in the USA ${ }^{1,2}$ and Australia ${ }^{3}$ support circumcision, which is best done in the neonatal period. ${ }^{4}$ A thorough risk-benefit analysis is, however, required.

Aim

To determine the overall medical benefit and risk of neonatal male circumcision.

Methods

PubMed searches by 'circumcision’ and relevant keywords.

Results

Table 1 shows increase in risk of various medical conditions conferred by lack of circumcision. Together, benefits of circumcision exceeded risks by 100 to $1 .{ }^{5}$ Over their lifetime 1 in 2 uncircumcised males will suffer a condition (some fatal) caused by retention of the foreskin. ${ }^{5}$ A meta-analysis showed substantial protection against urinary tract infections, finding these affected 1 in 3 uncircumcised males over their lifetime. ${ }^{6}$ The degree of protection was 10 -fold in infancy when risk of kidney damage is greatest. Circumcision protects against phimosis, paraphimosis, balanitis, sexually transmitted infections (e.g., oncogenic HPV [an epidemic], HSV-2, Trichomonas, mycoplasma, chancroid, syphilis and HIV), thrush, inferior hygiene, penile cancer (that affects 1 in 1,000 uncircumcised males over the lifetime) and prostate cancer. ${ }^{1,2,5}$
Circumcision protects the female partner(s) from cervical cancer, bacterial vaginosis and STIs ${ }^{1-5}$ (Table 1).
Risk of adverse events is 0.5%, virtually all being minor and immediately and easily treatable with complete resolution ${ }^{1,2,5,7}$ (Table 1). Neonatal male circumcision is highly cost-effective. ${ }^{8}$ There are no long-term adverse effects on sexual function, sensitivity or pleasure; 9 if anything sex is better. Legal and ethical considerations also support neonatal male circumcision. ${ }^{10}$

Conclusions

- The strong net benefit and low risk of neonatal male circumcision makes it comparable to childhood vaccination.
- Circumcision of baby boys should be offered routinely.
- Access should be facilitated and affordability assured by state and federal governments in the USA, UK, Australia and all other countries worldwide as an evidence-based public health imperative.

References

1. American Academy of Pediatrics. Pediatrics 2012;130:e756-85
2. Morris et al. Open J Prevent Med 2012;2:79-92
3. American Urological Association 2012 (online)
4. Morris et al. BMC Pediatrics 2012;12(article 20):1-15
5. ${ }^{*}$ Morris et al. Mayo Clin Proc 2014;89:677-86
6. Morris \& Wiswell. J Urol 2013;189:2118-24
7. El Bcheraoui C et al. JAMA Pediatr 2014;168:625-34
8. Kacker et al. Arch Pediatr Adolesc Med 2012;166:910-8
9. Morris \& Krieger. J Sex Med 2013;10:2644-57
10. Bates et al. BMC Pediatrics 2013;13(article 136):1-9

TABLE 1. Comprehensive risk-benefit analysis of neonatal male circumcision (ref ${ }^{5}$)

Risks from not circumcising

Condition	Increase in risk (95\% CI)	Rating of evidence	Percentage of uncircumcised affected
Urinary tract infections: age 0-1 year	$9.9(7.5-13)^{\text {Ref } 6}$	1++	1.3
Urinary tract infections: age 1-16 years	6.6 (3.3-13) ${ }^{\text {Ref6 }}$	1++	2.7
Urinary tract infections: age >16 years	3.4 (0.92-50) ${ }^{\text {Re f6 } 6}$	1+	28
Urinary tract infections: lifetime	3.6 (1.8-5.7) ${ }^{\text {Ref } 6}$	1+	32
Pyelonephritis (infants)	$10^{\text {Ref6 }}$	2+	0.6
- with concurrent bactaeremia	$20^{\text {Ref6 }}$	2+	0.1
- hypertension in early adulthood	-	$2-$	0.1
- end-stage renal disease in early adult	-	$2-$	0.06
Candidiasis (thrush)	2.5 (1.7-3.7) ${ }^{\text {Ref } 5}$	2+	10
Prostate cancer	1.2-2.0 ${ }^{\text {Ref5 }}$	2+	2-10
Balanitis	3.1 (1.9-5.0) ${ }^{\operatorname{Ref} 5}$	1+	10
Phimosis	$100{ }^{5}$	1++	10
High-risk HPV infection: RCT	1.5 (1.1-2.0) ${ }^{\text {Ref } 5}$	1++	6
High-risk HPV infection: meta-analysis	2.7 (1.2-6.3) ${ }^{\text {Ref } 5}$	1+	10
Herpes simplex virus type 2: RCT	$1.4(1.0-2.5)^{\text {Ref } 5}$	1++	4
HSV-2: meta-analysis	1.1 (1.0-1.3) ${ }^{\text {Ref } 5}$	1-	1
Genital ulcer disease	2.0 (1.4-2.3) ${ }^{\operatorname{Ref} 5}$	1+	2
Trichomonas vaginalis	1.9 (1.0-3.6) $\operatorname{Ref} 5$	1+	0.5
Mycoplasma genitalium	1.8 (1.0-3.4) ${ }^{\text {Ref } 5}$	1++	1
Chancroid	0.1-1.1 ${ }^{\operatorname{Ref} 5}$	1++	Low
Syphilis	1.9 (1.2-2.9) ${ }^{\text {Ref } 5}$	2+	Low
HIV (acquired heterosexually)	2.4 (1.8-3.2) ${ }^{\text {Ref } 5}$	1++	0.3
Penile cancer (lifetime)	>20 ${ }^{\text {Ref5 }}$	1++	0.1
In female partner:			
Cervical cancer	2.4 (1.3-4.3) ${ }^{\text {Ref } 5}$	2++	-
Chlamydia trachomatis	5.6 (1.7-20) ${ }^{\text {Ref } 5}$	2+	-
Herpes simplex virus type 2	$2.2(1.4-3.6){ }^{\operatorname{Ref} 5}$	2+	-
Trichomonas vaginalis	1.9 (1.0-10) Ref 5	1++	-
Bacterial vaginosis	$1.7(1.1-2.6)^{\text {Ref } 5}$	1++	-

Thus risk to an uncircumcised male of developing a condition requiring medical attention over their lifetime = very approximately 1 in 2.

Risks associated with neonatal circumcision

Condition	Percentage affected
Refs $1,2,5,7$	

Thus risk of an easily treatable condition = approx. 1 in 200 and of a serious complication = 1 in 5000.

